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Abstract
Nonnegative least squares problems with multiple right-hand sides (MNNLS) arise in 
models that rely on additive linear combinations. In particular, they are at the core of 
most nonnegative matrix factorization algorithms and have many applications. The non-
negativity constraint is known to naturally favor sparsity, that is, solutions with few non-
zero entries. However, it is often useful to further enhance this sparsity, as it improves the 
interpretability of the results and helps reducing noise, which leads to the sparse MNNLS 
problem. In this paper, as opposed to most previous works that enforce sparsity column- or 
row-wise, we first introduce a novel formulation for sparse MNNLS, with a matrix-wise 
sparsity constraint. Then, we present a two-step algorithm to tackle this problem. The first 
step divides sparse MNNLS in subproblems, one per column of the original problem. It 
then uses different algorithms to produce, either exactly or approximately, a Pareto front 
for each subproblem, that is, to produce a set of solutions representing different tradeoffs 
between reconstruction error and sparsity. The second step selects solutions among these 
Pareto fronts in order to build a sparsity-constrained matrix that minimizes the reconstruc-
tion error. We perform experiments on facial and hyperspectral images, and we show that 
our proposed two-step approach provides more accurate results than state-of-the-art sparse 
coding heuristics applied both column-wise and globally.

Keywords  Nonnegative least squares · Sparsity · Nonnegative matrix factorization

1  Introduction

Nonnegative least squares (NNLS) problems arise in many applications where data points 
can be represented as additive linear combinations of meaningful components (Lee and 
Seung 1997). For instance,
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•	 In facial images, the faces are the nonnegative linear combination of facial features 
such as eyes, noses and lips (Lee and Seung 1999).

•	 In hyperspectral images, the spectral signature of a pixel is the nonnegative linear com-
bination of the spectral signature of the materials it contains (Bioucas-Dias et al. 2012).

NNLS problems are also at the core of most approaches to solve nonnegative matrix fac-
torization (NMF); see (Gillis (2020), Chapter 8) and the references therein. The standard 
NNLS problem can be formulated as follows: given a dictionary matrix A ∈ ℝ

m×r and a 
data vector b ∈ ℝ

m , solve

Note that (1) is a convex problem.

1.1 � Sparsity and NNLS

The nonnegativity constraint is known to naturally produce sparse solutions, that is, solu-
tions with few non-zero entries (Foucart and Koslicki 2014). Sparsity often improves the 
interpretability of the results by modelling data points as combinations of only a few com-
ponents. For example, in hyperspectral unmixing, that is, the task of identifying materials 
in a hyperspectral image, sparsity means that a pixel contains only a few materials.

A natural sparsity measure is the �0-“norm”, defined as the number of non-zero entries 
in a given vector, ‖x‖0 = �{i ∶ xi ≠ 0}� . Given a positive integer k, a vector x is said to be 
k-sparse if ‖x‖0 ≤ k.

Unfortunately, the sparsity of the solution to an NNLS problem is not guaranteed in 
general, whereas controlling it can be helpful in many applications. For this reason, numer-
ous techniques have been developed to favor sparsity.

A sparsity-constrained variant of Problem  (1), referred to as k-sparse NNLS, is the 
following

Several algorithms exist to tackle Problem (2), either exactly or approximately; we detail 
them in Sect. 2.

In hyperspectral unmixing, this k-sparsity constraint implies that a pixel can be com-
posed of at most k materials. Although this formulation is intuitive, in some cases setting 
the parameter k is not straightforward. Therefore, we can also consider a biobjective formu-
lation where the objectives are, on the one hand, to minimize the reconstruction error, and 
on the other hand, to maximize the sparsity (that is, minimize the �0-“norm”),

As sparser solutions lead to higher error, these objectives are conflicting, so there is not an 
optimal solution to Problem (3) and we need a trade-off between the two objectives. Thus, 
we seek Pareto-optimal solutions.

Given different objectives to optimize, a solution x is said to be Pareto-optimal if there 
does not exist any solution which is at least as good as x on all objectives and strictly better 
than x on at least one objective. The set of all Pareto-optimal solutions for a given problem 
is called the Pareto front, see Fig. 1.

(1)min
x

‖Ax − b‖2
2

such that x ≥ 0.

(2)min
x

‖Ax − b‖2
2

such that x ≥ 0 and ‖x‖0 ≤ k.

(3)min
x≥0

{‖Ax − b‖2
2
, ‖x‖0}.
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Here, the discreteness of the �0-“norm” implies that solving Problem (3) conceptually 
reduces to solving Problem (2) for all possible values of k. To the best of our knowledge, 
there exist only one algorithm to solve Problem (3) exactly (Nadisic et al. 2021). We will 
present it in Sect. 2.1. It is also possible to modify some algorithms originally intended 
for k-sparse NNLS so that they generate an approximation of the Pareto front; we will see 
examples with greedy algorithms and the homotopy algorithm, respectively in Sects. 2.2 
and 2.3.

1.2 � Sparsity in NNLS problems with multiple right‑hand sides

In many cases, one has to deal with NNLS problems with multiple right-hand sides 
(MNNLS), that is, problems of the form

where B ∈ ℝ
m×n , A ∈ ℝ

m×r , and X ∈ ℝ
r×n . Given a matrix B ∈ ℝ

m×n , we note ‖B‖F its 
Frobenius norm, that is ‖B‖F =

�∑m

i=1

∑n

j=1
B(i, j)2 where B(i, j) is the entry of B at posi-

tion (i, j). We note B( : , j) the jth column of the matrix B. Problem (4) can be decomposed 
into n NNLS subproblems of the form (1), where B( : , j), A, and X( : , j) correspond to b, 
A, and x, respectively. For example, in the unmixing of a hyperspectral image, every col-
umn B( : , j) represents a pixel, and the corresponding column X( : , j) represents its com-
position, in terms of the abundances of the r materials whose spectral signatures are the 
columns of A. Note that in this work, for the sake of conciseness, we focus only on the 
(sparse) optimization of X, but all concepts and algorithms can be applied symmetrically 
on A.

This is closely related to the nonnegative matrix factorization (NMF) problem, of the 
form

in which we aim to find the factors A and X, given B and a factorization rank r. The usual 
optimization scheme for NMF consists in alternatively optimizing one factor while fixing 
the other, which is equivalent to solving MNNLS subproblems. Note that in this paper, we 
focus on MNNLS rather than NMF.

(4)min
X

‖B − AX‖2
F

such that X ≥ 0,

(5)min
A,X

‖B − AX‖2
F

such that A ≥ 0 and X ≥ 0,

Fig. 1   Example of the Pareto front for a biobjective k-sparse NNLS problem with r = 5 variables. The first 
solution, for ‖x‖

0
= 0 , corresponds to the zero vector. The last solution, for ‖x‖

0
= 5 , corresponds to the 

NNLS problem with no sparsity constraint. Here the penultimate solution is identical to the last one, mean-
ing that the solution with no sparsity constraint has naturally 1 zero entry
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To encourage sparsity in MNNLS, one can apply a sparse NNLS model column-wise, 
leading to

Solving Problem (6) boils down to solving n independent subproblems of the form (2). 
However, in some applications, setting the sparsity parameter k is tricky, as the relevant 
value can vary for different columns. For example, in hyperspectral unmixing, pixels will 
be composed of different numbers of materials. Therefore, one can consider a more global 
approach, such as

where ‖X‖0 =
∑

j ‖X(∶, j)‖0 and q is a matrix-wise sparsity parameter, hence enforcing 
an average sparsity q/n for the columns of X. In the following, Problem (7) is called the 
matrix-wise q-sparse MNNLS problem, and solving it is the main focus of this paper.

Note that (7) could theoretically be solved by any column-wise k-sparse NNLS algo-
rithm, because (7) is equivalent to the vectorized form

where ⊗ is the Kronecker product, I is the identity matrix of appropriate dimension, and 
vec(B) denotes the column vector obtained by stacking the columns of B on top of one 
another. Problem (8) is a k-sparse NNLS problem, but in practice its dimensions make 
it difficult to solve directly. Denoting 𝛺 = A⊗ I , we have � ∈ ℝ

(mn)×(rn) , which is par-
ticularly problematic in hyperspectral unmixing where the dimension n can reach tens of 
thousands.

It is possible to implement some k-sparse NNLS algorithms in a non-naive way to solve 
(8) efficiently without actually allocating � , and we detail such implementation of a greedy 
algorithm in Sect.  3.2. However, even in this case, when n is large then the problem to 
solve is huge and the computing time can become too high, see Sect. 4 for an experimental 
illustration.

1.3 � Contribution and outline of the paper

The main goal of this work is to describe a novel method able to solve efficiently the 
matrix-wise q-sparse MNNLS problem (7), even in large dimensions. This method can be 
summarized by two main steps: 

1.	 Problem (7) is divided in n subproblems of the form (3) and, for each of them, the Pareto 
front is computed with existing algorithms.

2.	 One solution per column (hence per Pareto front) is selected to build a solution to 
Problem (7), that is, a q-sparse matrix. This combinatorial step is solved exactly with a 
dedicated algorithm.

To the best of our knowledge, this work is the first to tackle specifically Problem  (7). 
Note that the algorithms used in the first step are not original contributions. The contri-
butions lie rather in the use of these existing algorithms to generate the Pareto fronts of 

(6)min
X

‖B − AX‖2
F

such that X ≥ 0 and ‖X(∶, j)‖0 ≤ k for all j.

(7)min
X

‖B − AX‖2
F

such that X ≥ 0 and ‖X‖0 ≤ q,

(8)
min
x̄

‖vec(B) − (A⊗ I)
���

𝛺

x̄‖2
2
such that x̄ ≥ 0 and ‖x̄‖0 ≤ q,
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the subproblems, and the combination of these fronts with a novel algorithm to obtain a 
q-sparse matrix.

This paper is organized as follows. In Sect. 2, we present existing approaches for sparse 
MNNLS, and we detail the three algorithms used to generate Pareto fronts. In Sect. 3, we 
present the main contribution of this work, that is, an algorithm to solve Problem (7). We 
illustrate the effectiveness of our proposed method with experiments on real-world facial 
and hyperspectral image datasets and on synthetic datasets in Sect.  4. We conclude in 
Sect. 5.

2 � Related work

Most approaches that tackle sparse MNNLS were actually introduced in the context of 
sparse NMF. Since its very introduction by Lee and Seung (1999), NMF is appreciated 
for the sparsity of the produced factors. A variety of works have been proposed to further 
enhance this sparsity, making sparse NMF one of the most popular variants of NMF. Many 
authors worked on the �1-penalized formulation, notably Hoyer (2002); Eggert and Korner 
(2004); Kim and Park (2007); Cichocki et al. (2008); Gillis (2012). This formulation uses 
the �1-norm as a convex surrogate of the �0-“norm” to ease the computation, but it presents 
several disadvantages, see Sect. 2.3 for a detailed explanation.

To avoid the issues linked to the �1-penalty, Hoyer (2004) introduced a more explicit 
sparsity measure based on the ratio between the �1-norm and the �2-norm, and he consid-
ered an NMF variant with a column-wise constraint on this measure. Other works consid-
ered the �0-“norm” formulation, that can be decomposed into a series of k-sparse NNLS 
subproblems. We can cite Aharon et al. (2005); Morup et al. (2008); Peharz and Pernkopf 
(2012). Cohen and Gillis (2019) proposed a method that solves exactly the k-sparse NNLS 
subproblems using a bruteforce approach. Nadisic et  al. (2020) extended this work by 
replacing the bruteforce subroutine by a dedicated branch-and-bound algorithm. To the 
best of our knowledge, no existing work considered a matrix-wise �0 constraint.

Some similar models have been studied, such as simultaneous sparse approximation 
(Tropp et al. 2006; Stojnic et al. 2009), where X is constrained to be block-sparse, that is, 
to have sparse columns sharing the same support. The assumptions of these models, the 
algorithms to solve them, and their applications are far from our focus, so detailing them is 
out of the scope of this article.

In the following, we detail three types of sparse NNLS algorithms on which we will rely 
to generate Pareto fronts, that is, to solve Problem (3).

2.1 � Arborescent

The algorithm Arborescent (Nadisic et al. 2020) is a branch-and-bound algorithm designed 
to solve exactly k-sparse NNLS problems. In a nutshell, Arborescent enumerates the pos-
sible supports (that is, the possible patterns of zeros) on a search tree, as shown in Fig. 2.

Every node represents an over-support K , that is, the set of entries that are not con-
strained to 0. Exploring a node means solving the NNLS subproblem

(9)f ∗(K) = min ||A(∶,K)x(K) − b||2
2
such that x(K) ≥ 0,
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where x(K) denotes the subvector of x with indices in the set K . This subproblem can be 
solved with any standard NNLS solver, and here it is done with an active-set algorithm 
(Portugal et al. 1994), which provides an exact solution in a finite number of iterations. The 
value f ∗(K) is the error associated with the node corresponding to K . To prune this tree, 
Arborescent uses the fact that in any optimization problem, when adding constraints, the 
solution cannot improve. By doing a depth-first exploration, we can quickly find feasible 
solutions and then prune efficiently large parts of the search space.

An extension of this algorithm (Nadisic et al. 2021) computes exactly the Pareto front 
corresponding to the biobjective problem (3). It is based on the fact that, when computing 
the k-sparse solution to an NNLS problem, Arborescent also computes all k′-sparse solu-
tions for k� ∈ {k,… , r} . If we set k = 1 , then we compute the entire Pareto front. If k > 1 , 
we compute only a portion of it.

This algorithm is fast in practice when the dimension r is small, which is generally the 
case in hyperspectral unmixing. However, it is still computationally expensive and quite 
slow for problems of large dimensions, when r is larger than a few tens. For this reason, 
practitioners often prefer other sparsity-inducing approaches, such as greedy algorithms or 
�1-regularization.

Other works tackled the �0-constrained problem exactly, but without nonnegativity con-
straints, see for example Ben Mhenni et  al. (2021) and the references therein. It may be 
possible to adapt them in the nonnegative setting, but this is still an open problem and out 
of the scope of this article. To best of our knowledge, no other work considered computing 
the Pareto front of the biobjective sparse problem.

2.2 � Greedy algorithms

Greedy algorithms are one of the most popular approaches for solving Problem (2). They 
start with an empty support ( xi = 0 for all i), and select components one by one to enrich 
the support, until the target sparsity k is reached. The selection of a component is done 
greedily by choosing the component minimizing the residual error. Orthogonal versions of 
these methods, such as Orthogonal Least Squares (OLS) (Chen et al. 1989) and Orthogo-
nal Matching Pursuit (OMP)  (Pati et  al. 1993) make sure a component can be selected 
only once. Nonnegative variants have been recently proposed; see for example  Nguyen 
et al. (2019) and the references therein. In general, these algorithms do not give the glob-
ally optimal solution. Theoretical recovery guarantees exist, but they are restrictive (Tropp 
2004; Soussen et al. 2013).

Fig. 2   Example of the search tree explored by Arborescent, for n = 5 and k = 2
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Interestingly, because they select components one after the other, greedy algorithms can 
be used as a proxy to compute an approximation of the Pareto front of the corresponding 
biobjective sparse NNLS problem. Indeed, the solution at the i-th iteration of the algorithm 
is i-sparse. By running the algorithm with a sparsity target k, we also compute, as a side 
effect, some k′-sparse solutions for k� ∈ {1,… , k} . Therefore, to obtain an approximation 
of the Pareto front, it suffices to return all intermediate solutions instead of only the final 
one.

In this paper, we will only focus on Nonnegative OMP (NNOMP) for conciseness, 
but this approach could be easily generalized to similar greedy algorithms. NNOMP was 
first introduced by Bruckstein et al. (2008), but many variants exist, and implementations 
details can have a significant impact on the performance of these algorithms. Reviewing 
them is out of the scope of this article, and we refer the interested reader to Nguyen et al. 
(2019).

2.3 � Homotopy

The �1-norm, defined as ‖x‖1 =
∑r

i=1
�xi� , is a convex surrogate of the �0-“norm”, it is 

therefore easier to optimize while being able to promote sparsity. The �1-regularization 
consists in penalizing the solution in the objective function of (1), leading to the following 
problem, referred to as �1-NNLS,

Note that without the nonnegativity constraint, this is the well-known LASSO model (Tib-
shirani 1996). Problem (10) can be thought of as the weighted-sum form of a biobjective 
problem, where the objectives are minimizing the reconstruction error ‖Ax − b‖2

2
 on one 

hand, and minimizing the �1-norm of the solution ‖x‖1 on the other hand. The parameter � 
controls the trade-off between the two objectives.

Despite its popularity, this technique suffers from several drawbacks. In particular, 
there is no explicit relation between the parameter � and the sparsity of the solution, hence 
choosing an appropriate value for � can be tricky, and often involves a tedious trial-and-
error process. Also, the �1-penalty introduces a bias. Although there exist theoretical guar-
antees for support recovery, such as the Exact Recovery Condition (Tropp 2006), they are 
restrictive and often not realistic in practice.

To overcome these issues, homotopy algorithms have been introduced. They generate 
the full regularization path of a given �1-NNLS problem, that is, the set of the solutions 
for all possible values of � . They allow the user to choose the relevant solution within 
this path, each solution representing a different trade-off between sparsity and reconstruc-
tion error. The first homotopy algorithm has been introduced by Osborne et  al. (2000), 
for sparse least squares with no nonnegativity constraint. Variants have been developed by 
Efron et al. (2004) and Donoho and Tsaig (2008). Kim et al. (2013) introduced a variant to 
deal specifically with the nonnegativity constraint.

In a nutshell, the homotopy algorithm uses the KKT conditions (necessary conditions 
for optimality) to first find the value �max for which the optimal solution of �1-NNLS is 
x = 0 for any � ≥ �max , and then to compute the next smaller values of � for which the sup-
port (that is, the set of non-zero entries) of the optimal solution changes (one zero entry 
becomes non-zero, or the other way around). This is similar in spirit to active-set meth-
ods, akin to the simplex algorithm for linear programming. These values of � are called 

(10)min
x∈ℝr

‖Ax − b‖2
2
+ �‖x‖1 such that x ≥ 0.
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breakpoints, between which the support of the optimal solution does not change; see 
Figs. 3 and 4 for an illustration.

Although the nonnegative homotopy algorithm is not an original contribution, we 
include in Appendix 1 its detailed description and justification.

The strength of the homotopy algorithm is to generate the full regularization path, that 
is, the set of optimal solution for all possible values of � , for the same cost as a standard 
active-set algorithm. The solutions in this path represent different tradeoffs between recon-
struction error and sparsity, and as such this path can be seen as an approximation of the 
Pareto front in Problem (3).

3 � Solving matrix‑wise q‑sparse MNNLS

In this section, we study how to tackle matrix-wise q-sparse MNNLS, that is, Problem (7). 
First, we present the key contribution of this work, that is a two-step algorithm to solve 
Problem (7). Then, we show how the greedy algorithm NNOMP can be implemented spe-
cifically for Problem (7) to avoid the costly reformulation from Eq. 8.

3.1 � Our key contribution: a two‑step algorithm for matrix‑wise q‑sparse MNNLS

In this section we present the main contribution of this paper, that is, a two-step algorithm 
to solve Problem (7). This algorithm is called Salmon1 and it is detailed in Algorithm 1. 
The motivation behind it is to divide the large matrix-wise problem into small one-column 
subproblems, solve them, and then combine their solutions to build a global solution.

Fig. 3   Example of a solution 
path of a homotopy algorithm, 
depending on � , for a problem of 
3 variables. Vertical dotted lines 
correspond to breakpoints

Fig. 4   Trade-off between the �
1

-norm and the error ‖Ax − b‖2
2
 

corresponding to the solution 
path in Fig. 3

1  The name stands for SALMON Applies �
0
-constraints Matrix-wise On NNLS problems.
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Step 1 corresponds to lines 1 to 11. It consists in, given the data matrix B and the dic-
tionary A, running an algorithm to generate a Pareto front for every column of B, that is, 
with input A and b = B(∶ j) for all j. This can be done by any of the three Pareto-front-
generating methods presented in Sect. 2; exactly with Arborescent and approximately with 
NNOMP and the homotopy algorithm. From these fronts, we build a cost matrix C where 
each column represents a column j of X, each row represents a k-sparsity between 0 and r, 
and each entry is the reconstruction error of the k-sparse solution of column j. Formally, 
for all i ∈ {0,… , r} and j ∈ {1,… , n},

and Soli,j stores the corresponding argmin, that is the best i-sparse solution for column j.

Remark 1  The algorithms used to generate the Pareto front in step 1 do not necessarily gen-
erate one k-sparse solution for a each k; they may generate more than one solution, or no 

C(i, j) ≈ min
x≥0

‖B(∶, j) − Ax‖2
2
s.t. ‖x‖0 ≤ i,
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solution at all for a given k. For example, NNOMP selects columns of A sequentially, but 
some of them may not have a positive weight when solving the corresponding NNLS. The 
loop on line 8 ensures that, if there exists some k for which no k-sparse solution is gener-
ated, then the (k − 1)-sparse solution is used instead (or the (k − 2)-sparse one if no (k − 1)

-sparse solution is generated, and so on). The condition on line 9 ensures that, if there are 
several k-sparse solutions for a given k, then only the best one is kept.

Once C is computed, step 2 consists in selecting one solution per column to build the 
solution matrix X, that is, it consists in choosing the sparsity level for each column of X. 
This selection step is a combinatorial problem, similar to an assignment problem. Let us 
define the binary variables zi,j ∈ {0, 1} for i ∈ {0, 1,… r} and j ∈ {1, 2,… n} such that 
zi,j = 1 if and only if the jth column of X is i-sparse. Note that i can be equal to 0, cor-
responding the the zero vector. The variable z encodes which sparsity level is selected for 
each column of X. Given the cost matrix C computed in step 1, step 2 requires to solve the 
following integer program

The objective is to minimize the reconstruction error, while the first constraints impose that 
each column of X has a single sparsity level, and the second that the total number of non-
zero entries of X does not exceed q.

We propose a greedy selection algorithm to solve  (11), see lines 12 to 28 of Algo-
rithm 1. As we will prove in Theorem 1, this greedy strategy is nearly optimal. It works as 
follows. For each column j, the scalar kj indicates its sparsity level at the current iteration, 
that is, at every iteration, the jth column of X is kj-sparse. We initialize the algorithm with 
the 0-sparse solution (the vector of all zeros) for each column (line 12), that is, kj = 0 for 
all j. Note that 

∑
j kj corresponds to the current sparsity level of the solution.

At each iteration, we will decrease the sparsity of a single column of X. To pick that 
column in an optimal way, let us define the matrix G , with the same dimensions as C, as 
follows: at any iteration, the entry G(i, j) is equal to the potential gain in reconstruction 
error if the jth column of X goes from kj-sparse to i-sparse divided by the sparsity differ-
ence between these two solutions (that is, i − kj ). In particular, at the first iteration (line 15), 
when X = 0 , we have

Let us denote by (i∗, j∗) the position of the largest entry of G . Given a current solution, the 
column that will decrease the error ‖B − AX‖2

F
 the most by decreasing its sparsity is the 

one corresponding to the column of G with the largest entry, that is, the j∗ th column. Find-
ing this entry is cheap in practice, as we update a sorted list of the maximum entry of each 
column of G . We denote the quantity � as the difference in sparsity of the selected column 
before and after it has been updated, that is, � = i∗ − kj∗ . After the value of kj∗ has been 
updated to i∗ , we update the entries of the j∗ th column of G accordingly (line 23). Note that 
G(i, j∗) = 0 for all i ≤ i∗.

To avoid generating a too dense solution (recall 
∑

j kj must be smaller than q), the pro-
cedure on lines 24 to 26 sets to zero the entries of G whose selection would lead to a total 

(11)

min
z∈{0,1}r×n

∑

i,j

zi,jC(i, j)

such that
∑

i

zi,j = 1 for all j, and
∑

i,j

i zi,j ≤ q.

G(i, j) =
C(0, j) − C(i, j)

i
for all i, j.
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sparsity 
∑

j kj larger than q. Note that thanks to the condition on line 9, this procedure is 
executed only for the last few iterations of Salmon. Indeed, the maximum increase � is r, so 
this procedure would not be useful as long as 

∑
j kj ≤ q − r.

When the sum of the sparsity levels equals q, or when all entries of G are zero, we stop 
the procedure and we build the final q-sparse solution X by selecting for each column the 
solution corresponding to its final sparsity level (line 27).

Although the selection algorithm of step 2 is greedy, since we perform an optimal selec-
tion at each iteration, it is able to generate a near-optimal solution to Problem (11), as 
shown below.

Theorem 1  (Near-optimality of the selection step) Given that C is non-increasing by col-
umns, that is, C(i, j) ≤ C(i�, j) for all i′ ≤ i and all j, the proposed selection step of Salmon 
(lines 12 to 28 of Algorithm 1) computes a near-optimal solution of (11) in the following 
sense. Denoting

•	 f (z) = 
∑

i,j zi,jC(i, j) the value of the objective function of (11) for a solution z,
•	 z∗ an optimal solution to Problem (11), and
•	 zSal the solution computed by the selection step of Salmon,

we have

Proof  First, note that our proposed greedy algorithm generates a feasible solution of (11) 
since we make sure that 

∑
j kj remains smaller than q, and hence, by optimality of z∗ , 

f (z∗) ≤ f (zSal).
Let us now show that f (zSal) ≤ f (z∗) +maxj ‖C(∶, j)‖∞ . Our greedy procedure is 

similar to a dynamic programming approach. In fact, let us denote the optimal objective 
function value of (11) as f ∗(q) that depends on the parameter q, the global sparsity level 
allowed; note that f (z∗) = f ∗(q) . The greedy algorithm is initialized with z0,j = 1 for all j, 
that is, X = 0 , which is optimal for q = 0 (it is the only feasible solution), and hence gives 
f ∗(0) =

∑
j C(0, j) . It then progressively decreases the sparsity to reduce the objective the 

most at each iteration. At each iteration of the greedy algorithm, the support of a single 
column of X is increased in order to maximize the ratio between the decrease in objec-
tive function value and the decrease of sparsity. Since the columns of X do not interact 
with each other in the objective function and since C is non-increasing in each column, 
the greedy solution cannot possibly be improved as long as � ≤ q −

∑
j kj , that is, as long 

as this optimal way of picking a column is allowed by the global sparsity level. In sum-
mary, our greedy algorithm produces intermediate optimal solutions of (11) with objective 
f ∗(

∑
j kj + �) as long as 

∑
j kj + � ≤ q.

The only moment when the greedy algorithm might fall short of global optimality is 
during the last iterations: if at some point the optimal move is to increase the support of a 
column in such a way that the total sparsity would exceed q (that is, 

∑
j kj + 𝛿 > q ), then our 

greedy algorithm may not be optimal because, to allow that move, we might need to reduce 
the support of another column, which the greedy approach does not allow. Making that 
move anyway would generate an optimal solution with global sparsity q� =

∑
j kj + 𝛿 > q 

which would not be feasible for (11). Observe that

f (z∗) ≤ f (zSal) ≤ f (z∗) +max
j

‖C(∶, j)‖∞.



	 Machine Learning

1 3

•	 f (zSal) ≤ f ∗(q� − �) since the greedy algorithm keeps improving the (q� − �)-sparse 
solution in its next iterations (although possibly not optimally).

•	 f ∗(q�) ≥ f ∗(q� − �) −maxj ‖C(∶, j)‖∞ since the move from q� − � to q′ using the greedy 
strategy is optimal and, in the worst case, will decrease the sparsity level of a column 
from r to 0 reducing the error by at most maxj ‖C(∶, j)‖∞.

•	 f ∗(q�) ≤ f ∗(q) ≤ f ∗(q� − �) since q� − � ≤ q ≤ q�.

Combining these observations, we obtain

which gives the result.

Note that, in most practical cases, such as hyperspectral unmixing, we have n ≫ r and 
hence maxj ‖C(∶, j)‖∞ is negligible compared to f (z∗) . In addition, it is rather unlikely that 
the greedy algorithm needs to increase the sparsity level of one column from 0 to r at the 
last step. In fact, in our experiments, we observed that � is in most cases equal to 1. When � 
is equal to 1 in the last r steps, the greedy algorithm is globally optimal (or, more generally, 
when � = q −

∑
k kj in the last step). For example, for the datasets used in the numerical 

experiments (Sect. 4) and with the three sparse NNLS algorithms to generate the Pareto 
fronts (that is, the matrix C), the greedy selection algorithm generated a guaranteed glob-
ally optimal solution (that is, � = q −

∑
k kj in the last step) in 19 out of 22 cases.

In practice, the global optimality of Salmon to solve the sparse MNNLS problem (7) 
therefore heavily relies on step 1. If step 1 is done with Arborescent, then the Pareto fronts 
are computed optimally and Salmon computes a near-optimal solution to Problem (7). Oth-
erwise, it only computes an approximate solution, although there exist some conditions 
under which NNOMP or the homotopy algorithm do recover the true Pareto fronts, see 
Sects. 2.2 and 2.3.

3.1.1 � Computational cost of Salmon

The cost of step 1 depends on the algorithm used to generate the Pareto fronts. In all cases, 
the n biobjective subproblems are solved independently, so the cost of step 1 grows linearly 
with n. For one subproblem, that is, to generate one Pareto front, we have that

•	 The cost of Arborescent depends on the number of nodes explored in the branch and 
bound. In the worst case, it is of the same order as the bruteforce algorithm, and 

requires to solve 
(
r

k

)
 NNLS subproblems, while, in the best case, it is of the order of 

r (Nadisic et al. 2020). Empirically, the cost is far from the worst case but grows faster 
than linear with r.

•	 The cost of NNOMP is in O(mr4) operations (Yaghoobi et al. 2015).
•	 The cost of the homotopy algorithm is of the same order as an active-set algorithm and 

requires at least O(r4) operations, see Appendix 1.

Given C, the selection step consists in building G in O(rn) operations, then iterating q times 
(in the worst case) to select a solution. As we maintain updated a sorted list to avoid rec-
omputing the maximum at each iteration, this is done in O(q log(n)) operations. Since q is 

f ∗(q) = f (z∗) ≥ f ∗(q�) ≥ f ∗(q� − �) −max
j

‖C(∶, j)‖∞ ≥ f (zSal) −max
j

‖C(∶, j)‖∞,
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in the order of rn in the worst case, the cost of the selection step is dominated by the cost of 
the Pareto-front-generating step.

3.2 � Adapting NNOMP for matrix‑wise q‑sparse MNNLS

Let us now adapt NNOMP for the matrix-wise q-sparse MNNLS problem. To avoid 
the overcost of solving the vectorized Problem (8) directly with NNOMP, we can adapt 
NNOMP to handle the matrix form of Problem (7). We detail the adaptation in Algo-
rithm 2; note that it is not an original contribution and seems to be common knowledge in 
the sparse approximation community. The solution produced by this algorithm is strictly 
equivalent to the one produced by direct solving of (8). Our goal in introducing it is to 
show how using NNOMP within the two-step algorithm Salmon is advantageous compared 
to using NNOMP directly on Problem (7). On line 1, we initialize X as a zero matrix, S as 
an empty support, and the residual RS as equal to B. Then, we select greedily entries to add 
to the support, while the cardinality of the support is lower than q and the residual greater 
than zero (line 2). The greedy selection on line 3 consists in choosing the entry that maxi-
mizes the decrease of the residual error; this entry is added to the support on line 4. Then, 
we update X on line 5 (this is an NNLS problem, that we solve with an active-set algo-
rithm), and the residual RS on line 6; note that in practice we only need to update the j∗-th 
column of X and RS . On line 7 we perform a support compression, that is, we restrain the 
support to the non-zero entries of X. This last step is necessary because of the nonnegativ-
ity constraint, that may put to zero an entry that was selected at a previous iteration.

Other greedy algorithms could be adapted similarly, but here we focus only on NNOMP 
for conciseness. Also, our goal is to study how the original NNOMP compares to NNOMP 
used within the two-step approach Salmon, rather than comparing different greedy algo-
rithms with each other. The homotopy algorithm may also be similarly adaptable, but this 
is not trivial and out of the scope of this article.

4 � Experiments

In this section, we study the performance of the proposed algorithm Salmon on the unmix-
ing of 7 datasets: 3 faces datasets and 4 hyperspectral images. Then, we study the evolution 
of the computing time of the algorithm when the sparsity parameter q varies. Finally, we 
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test on synthetic datasets the ability of Salmon to recover the underlying solution in the 
presence of noise, when the sparsity varies between columns, with both well-conditioned 
and ill-conditioned data.

4.1 � Data

In the faces datasets, each column of B corresponds to a pixel and each row to an image 
(that is, B(i, j) is the intensity of pixel j in image i). It is well-known that NMF will extract 
facial features as the rows of matrix X (Lee and Seung 1999). As no groundtruth is avail-
able, we first compute A with SNPA (Gillis 2014), an algorithm for separable NMF, setting 
the factorization rank r as in the literature. We then compute X with our sparsity-enhancing 
method. Imposing sparsity on X means that we require that only a few pixels are contained 
in each facial feature (Hoyer 2004). We consider the 3 widely used face datasets CBCL2, 
Frey3, and Kuls4.

Similarly a hyperspectral image is an image-by-pixel matrix where each image corre-
sponds to a different wavelength. The columns of A represent the spectral signature of the 
pure materials (also called endmembers) present in the image (Bioucas-Dias et al. 2012), 
and we use the ground truth A from Zhu (2017). We compute X, whose columns repre-
sent the abundance of materials in each pixel. It makes sense to impose X to be sparse as 
most pixels contain only a few endmembers  (Ma et al. 2013). We consider the 4 widely 
used datasets5 Jasper, Samson, Urban, and Cuprite. The characteristics of these datasets are 
summarized in Table 1.

4.2 � Methods

All methods have been implemented in Julia and run on a computer with a processor Intel 
Core i5-2520M @2.50GHz. The code and experiment scripts are provided in an online 
repository.6

We compare the following methods:

Table 1   Summary of the 
datasets, for which B ∈ ℝ

m×n and 
A ∈ ℝ

m×r

Dataset Type m n r

CBCL Faces 2429 19 × 19 = 361 49
Frey Faces 1965 20 × 28 = 560 36
Kuls Faces 20 64 × 64 = 4096 5
Jasper Hyperspectral 198 100 × 100 = 10000 4
Samson Hyperspectral 156 95 × 95 = 9025 3
Urban Hyperspectral 162 307 × 307 = 94249 6
Cuprite Hyperspectral 188 250 × 191 = 47750 12

2  Downloaded from http://​poggio-​lab.​mit.​edu/​coded​atase​ts.
3  Downloaded from https://​cs.​nyu.​edu/​~roweis/​data.​html.
4  Downloaded from http://​www.​robots.​ox.​ac.​uk/.
5  Downloaded from http://​lesun.​weebly.​com/​hyper​spect​ral-​data-​set.​html.
6  https://​gitlab.​com/​nnadi​sic/​giant.​jl.

http://poggio-lab.mit.edu/codedatasets
https://cs.nyu.edu/%7eroweis/data.html
http://www.robots.ox.ac.uk/
http://lesun.weebly.com/hyperspectral-data-set.html
https://gitlab.com/nnadisic/giant.jl
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•	 AS denotes an active-set algorithm that solves exactly the NNLS problem without spar-
sity constraint. It serves as a baseline to compare with the sparsity-constrained meth-
ods.

•	 �1-CD denotes a coordinate descent algorithm with an �1 penalty. The penalty param-
eter � is fixed and the same for the whole matrix, as in Kim and Park (2007). It has been 
tuned manually to reach the target sparsity. We compute the unbiased solution by run-
ning an active-set NNLS algorithm restrained to the non-zero elements of the �1-penal-
ized solution.

•	 Hcw denotes the homotopy algorithm described in Sect. 2.3, that solves the column-
wise k-sparse problem, as defined in (6). For each column, we generate the regulariza-
tion path, take the best k-sparse solution, and unbias it as described above.

•	 H+S corresponds to the two-step algorithm Salmon using the homotopy algorithm in 
step 1 (solutions are unbiased as above).

•	 OGcw stands for orthogonal greedy and denotes the NNOMP algorithm described in 
Sect. 2.2, that solves the column-wise k-sparse problem.

•	 OGg denotes the matrix-wise variant of NNOMP described in Sect. 3.2.
•	 OG+S corresponds to the two-step algorithm Salmon using NNOMP in step  1. We 

generate the whole Pareto fronts, hence the column-wise sparsity target for NNOMP is 
k = r.

•	 ARBOcw denotes the branch-and-bound algorithm Arborescent described in Sect. 2.1, 
that solves the column-wise k-sparse problem.

•	 ARBO+S corresponds to the two-step algorithm Salmon using Arborescent in step 1. 
We generate the whole Pareto fronts, hence the column-wise sparsity target for Arbo-
rescent is k = 1.

4.3 � Experiment 1: hyperspectral unmixing

In this experiment, we compare the performance of different variants of Salmon with the 
corresponding column-wise algorithms and with OGg. For each dataset, we choose the 
parameter k by trial-and-error. Unless stated otherwise, we define the sparsity parameter of 
matrix-wise methods as q = k × n , which is equivalent to an average column-wise k-spar-
sity constraint.

For every dataset, we run the nine methods, and measure the average column-sparsity of 
the given solutions (defined as the number of non-zero entries divided by the number of 
columns), the relative reconstruction error ‖B−AX‖F‖B‖F

 , and the computing time, for which we 
measure the median over 10 runs. We set a timeout of 6000 seconds. Note that, for a given 
dataset and with the same parameters, a given algorithm always gives the same output. For 
the 3 methods based on NNOMP, we normalize the columns of the matrix A before the 
computation.

The results of the experiments are summarized in Table 2.
We first note the natural sparsity of the data: without sparsity constraint, AS already 

produces very sparse solutions, and column-wise methods produce solutions with an aver-
age sparsity below the sparsity target k, meaning that some columns are naturally sparser 
than k. We observe that the column-wise methods give relatively bad results in terms of 
reconstruction error, while the variants of Salmon are able to enforce sparsity while limit-
ing the loss in error. H+S is only slightly slower than Hcw, meaning that the selection (step 
2) takes less time than the homotopy (step 1). On the other hand, OG+S and ARBO+S are 
slower than their column-wise counterparts because they need to be run with a different 
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sparsity target, respectively k = r and k = 1 , to compute the whole Pareto front. The com-
puting times of H+S and OG+S seem proportional, and differ by a factor between 2 and 
3, which is consistent with our discussion about computational cost in Sect.  3.1. �1-CD 
is very fast, and produces good solutions with some datasets (Jasper, Samson), but it is 
outperformed by Salmon in all cases and sometimes produces solutions with high error 
(CBCL, Cuprite).

Comparing OGg and OG+S, we observe that OGg is faster for tall matrices, while 
OG+S is faster for short and fat matrices. Also, OG+S is always better in terms of recon-
struction error, meaning that performing the heuristic column-wise and then recombin-
ing solutions is more efficient than applying the same heuristic matrix-wise. As regards 
Arborescent, we see a clear improvement of reconstruction error with Salmon, at the cost 
of a larger computation time. The two-step approach of Salmon allows Arborescent to be 
applied for matrix-wise q-sparse MNNLS, which would be impossible otherwise. Another 

Table 2   Results of the experiments, for the unmixing of facial and hyperspectral datasets

Time is in seconds, relative error in percent, and sparsity is the average number of non-zero entries per 
column. Numbers in bold represent, for a given setting, the error of ARBO+S and the best error among 
the other sparse methods. For the variants of Salmon, a star ∗ indicates that the greedy selection (step 2 of 
Salmon) is optimal (which can be checked easily: it requires � = q −

∑
k kj at the last iteration). Jasper is 

processed once with all algorithms for k = q∕n = 2 , and once with matrix-wise algorithms for q∕n = 1.8 
(which is not possible with column-wise algorithms)

AS �
1
-CD Hcw H+S OGcw OGg OG+S ARBOcw ARBO+S

CBCL Time 0.2 0.1 0.71 0.81 0.08 0.31 3.7 Timeout Timeout
r = 49 Error 12.04 17.37 16.19 13.22∗ 13.12 12.35 12.3∗ – –
k = 3 Sparsity 6.64 3 2.69 3 2.37 3 3 – –
Frey Time 0.22 0.08 1.12 1.27 0.18 0.61 3.97 Timeout Timeout
r = 36 Error 19.35 21.76 23.22 20.75∗ 21.35 19.86 19.8 – –
k = 6 Sparsity 12.29 6 5.52 6 4.64 6 6 – –
Kuls Time 0.17 0.12 0.18 0.17 0.28 1.82 0.5 0.67 1.41
r = 5 Error 19.05 19.61 20.13 19.12∗ 19.46 19.06 19.06∗ 19.42 19.06∗

k = 3 Sparsity 3.45 3 2.86 2.99 2.7 3 3 2.76 3
Jasper Time 0.34 0.22 0.38 0.48 0.39 6.08 1.12 1.21 1.93
r = 4 Error 5.71 5.72 6.99 5.72∗ 7.49 5.76 5.73 6.18 5.71∗

k = 2 Sparsity 2.27 2 1.78 1.99 1.72 2 2 1.78 2
Jasper Time – 0.18 – 0.44 – 5.26 1.15 – 1.7
r = 4 Error – 7.87 – 5.95∗ – 6.06 5.77∗ – 5.74∗

q∕n = 1.8 Sparsity – 1.8 – 1.79 – 1.8 1.8 – 1.8
Samson Time 0.22 0.24 0.2 0.26 0.31 3.67 0.57 0.52 0.8
r = 3 Error 3.3 3.3 3.34 3.3∗ 6.76 3.32 3.3∗ 3.4 3.3∗

k = 2 Sparsity 2.2 2 1.85 2 1.6 1.99 1.99 1.83 2
Urban Time 5.08 4.31 4.86 7.79 3.38 958 16.4 33.5 73.1
r = 6 Error 7.67 8.13 8.62 7.83∗ 8.97 8.07 7.76∗ 8.27 7.71∗

k = 2 Sparsity 2.63 2 1.9 2 1.7 2 2 1.83 2
Cuprite Time 5.19 3.32 7.86 10.1 5.06 620 31.5 784 4829
r = 12 Error 1.74 3.17 2.37 2.01 2.32 1.97 1.89∗ 1.93 1.83∗

k = 4 Sparsity 6.61 4 3.92 4 3.53 4 4 3.81 4
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advantage of the matrix-wise formulation is the capacity to tune the sparsity parameter 
more finely; this is illustrated on Jasper with q∕n = 1.8 , for which we reach an average 
sparsity similar to that of column-wise metods and still get lower errors. For the three vari-
ants of Salmon, the stars indicates that the selection (step 2) is done optimally as discussed 
in Theorem 1; here it is the case for 19 out of 22 settings.

The abundance maps corresponding to the faces dataset Kuls are shown in Fig. 5; the 
other abundance maps from our experiments are available in Appendix 2.

The features extracted in Fig. 5 correspond to different directions of light. Without spar-
sity constraint, the quality of the images is good, but the features are not well separated. 
Column-wise methods and �1-CD fail to retrieve the features and produce noisier images 
with pixelated regions. Salmon, using any of the 3 possible methods for step 1, produces 
better-separated features, with a better spatial coherence.

(a) AS (no sparsity constraint)

(b) �1-CD

(c) Hcw

(d) H+S

Fig. 5   Abundance maps (that is, reshaped rows of X) from the unmixing of the faces dataset Kuls by differ-
ent algorithms



	 Machine Learning

1 3

4.4 � Experiment 2: evolution of the computing time when q varies

In this experiment, we study the impact of the sparsity parameter q on the running time of 
the matrix-wise sparse MNNLS algorithms. For each setting, we run each algorithm 10 
times and keep the minimum running time. All algorithms are deterministic, so for a given 
setting the number of operations does not vary from one run to another and the differences 
in running time are due to the operating system, therefore taking the minimum time among 
several runs is a robust measure. We also show the running time of the non-sparse method 
AS as a baseline.

(a) OGcw

(b) OGg

(c) OG+S

(d) ARBOcw

(e) ARBO+S

Fig. 5   (continued)
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We consider the unmixing of the hyperspectral images Jasper (Fig. 6) and Urban (Fig. 7) 
for different values of q. On Jasper, the variants of Salmon have an almost constant running 
time, meaning that the cost of the selection step (step 2) is negligible compared to the cost 
of generating the Pareto fronts (step 1). On the other hand, the running time of OGg grows 
exponentially (note the log scale of the vertical axis), although it is faster than Salmon 
when q is small. On Urban, the results are very similar. The behaviour of ARBO+S and 
OGg is the same. For H+S, and to a lesser extent OG+S, the computing time slightly 
grows as q grows, meaning that the cost of the selection step is not negligible, but it is still 
dominated by the cost of step 1.

In this experiment, we find similar results on Jasper, a small image with r = 4 where the 
column-wise subproblems of step 1 are very small, and Urban, a large image with r = 12 

Fig. 6   Evolution of the comput-
ing time of matrix-wise sparse 
NNLS algorithms, when q varies, 
for the unmixing of the hyper-
spectral image Jasper

Fig. 7   Evolution of the comput-
ing time of matrix-wise sparse 
NNLS algorithms, when q varies, 
for the unmixing of the hyper-
spectral image Urban
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where these subproblems are quite large. This means that our selection algorithm is very 
fast and that the parameter q does not increase significantly the computing time of Salmon.

4.5 � Experiment 3: recovery of underlying solution on synthetic datasets

In this experiment, we study the ability of the matrix-wise sparse MNNLS algorithms to 
recover the true solution in synthetic data sets where X is generated with columns of differ-
ent sparsities. First, we generate A ∈ ℝ

100×6 following the uniform distribution in [0, 1]. If 
we want A to be ill-conditioned, we then compute the SVD of A = UΣV⊤ , replace the diag-
onal entries of Σ by values between 10−4 and 1 equally spaced in a log scale, and recon-
struct A = UΣV⊤ . Next, we generate X ∈ ℝ

6×200 such that all columns are k-sparse with 
k ∈ {2, 3, 4} chosen uniformly at random, while the nonzero entries are generated uni-
formly at random in the interval [0,1]. We then compute B = AX . For the noise to be added 
to B, we first generate a matrix N in which each entry is drawn from the normal distribution 
of mean 0 and variance 1, then rescale N ← �

N

‖N‖2
‖B‖2 so that ‖N‖2 = �‖B‖2 , where � is 

the noise level.
We generate this way 10 well-conditioned datasets and 10 ill-conditioned, and for dif-

ferent values of � we generate and add noise to B. We then try to compute X with different 
algorithms, given A and the noisy B, and we measure the recovery rate, defined as the pro-
portion of entries of the computed X having the same value (in the sense zero or non-zero) 
than the corresponding entry of the generated X. For each setting, we then average the 
recovery rate over the 10 datasets. Figures 8 and 9 show the results for the well-conditioned 
and the ill-conditioned data, respectively.

Surprisingly, for the well-conditioned dataset, all matrix-wise algorithms perform simi-
larly, expect H+S that performs slightly worst. When the noise level is below 10−2 = 1% , 
they almost perfectly recover the supports of the columns of X. For higher noise levels, the 
recovery rate drops rapidly.

For the ill-conditioned dataset, ARBO+S (the variant of Salmon using the exact algo-
rithm Arborescent in step 1) has a recovery rate close to 100% for noise smaller than 0.1% , 

Fig. 8   Evolution of the pro-
portion of entries correctly 
recovered by matrix-wise sparse 
NNLS algorithms, on a synthetic 
well-conditioned dataset, when 
the noise level varies. The rate 
plotted is the average over 10 
runs
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while other variants do not perform as well. The recovery rate of ARBO+S drops for noise 
above 0.1% but it still performs better than the other variants of Salmon, until 1% noise 
where OG+S becomes competitive.

As a conclusion, we see that using Arborescent in step 1 is especially effective with ill-
conditioned data, which is often the case in real-world settings. OG+S is also a good solu-
tion when the noise level is higher. Using Arborescent is not very interesting when data is 
well-conditioned.

What algorithm should one use for step 1 of Salmon? When the dimension r is small or 
when the computing time is not critical, the best option is to use Arborescent in step 1 as 
it is the only algorithm to compute the Pareto fronts exactly. It is also the only algorithm 
to properly handle ill-conditioned data. In other cases, using NNOMP in step 1 generally 
produces better solutions than using the homotopy algorithm. The homotopy algorithm is 
the fastest so it is appropriate when processing very large datasets with a limited time. Note 
that there exist many other sparse NNLS algorithms that could be adapted to perform step 
1, see for example Mohimani et al. (2007) or Blumensath and Davies (2009). We do not 
detail them for the sake of conciseness, and because our contribution lies not in the col-
umn-wise sparse methods but rather in how to use them in the two-step algorithm Salmon.

5 � Conclusion

In this paper, we focused on the multiple nonnegative least squares problem with a matrix-
wise �0 constraint. We introduced Salmon (Algorithm 1), that first computes for each col-
umn a Pareto front (step 1) and then applies a provably near-optimal selection strategy to 
build a solution matrix X (step 2). We computed the Pareto fronts with three existing algo-
rithms: one exact but slow branch-and-bound algorithm, and two fast heuristics. We illus-
trated the advantages of Salmon for the unmixing of real-world facial and hyperspectral 
images, for which it outperformed state-of-the-art methods. We also compared the different 
variants of Salmon on real-world and synthetic data sets to highlight their advantages and 
drawbacks.

Fig. 9   Evolution of the pro-
portion of entries correctly 
recovered by matrix-wise sparse 
NNLS algorithms, on a synthetic 
ill-conditioned dataset, when the 
noise level varies. The rate plot-
ted is the average over 10 runs
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Appendix 1: The homotopy algorithm

In this section, we detailed the homotopy algorithm mentioned in Sect. 2.3.
Given an �1-NNLS problem, the homotopy algorithm computes sequentially all optimal 

solutions for the different values of � . In a nutshell, it uses the KKT conditions (necessary 
conditions for optimality) to first find the value �max for which the optimal solution of �1

-NNLS is x = 0 for any � ≥ �max , and then to compute the next smaller values of � for 
which the support (that is, the set of non-zero entries) of the optimal solution changes (one 
zero entry becomes non-zero, or the other way around). This is similar in spirit to active-
set methods, akin to the simplex algorithm for linear programming. These values of � are 
called breakpoints, between which the support of the optimal solution does not change. We 
denote the first breakpoint �max , and the following ones �2 , �3 , … ; see Figs. 3 and 4 for an 
illustration.

Appendix 1.1: Optimality conditions

The homotopy algorithm uses the first-order optimality conditions, that is, the KKT con-
ditions, to determine the breakpoints and the supports of the corresponding solutions. 
Because x is nonnegative, we have ‖x‖1 =

∑
i xi = eTx , where e is the vector of all ones 

whose dimension will be clear from context. Therefore, the �1-NNLS problem can be writ-
ten as follows

The KKT conditions are x ≥ 0,

Equation 14 is the complementary condition; for every entry of x, either the entry itself or 
the corresponding gradient entry is equal to zero. To simplify the notation, let us define 
P = A⊤A and � = A⊤b.

As f is a convex function and the feasible set contains a Slater point (e.g., x = e ), the 
KKT conditions are necessary and sufficient. Therefore, any solution x satisfying them is 
optimal. Suppose we know the optimal support, that is, the set K such that x(K) > 0 and 
x(K̄) = 0 , where K̄ = {1, 2,… , n} ⧵K . Then

and

Replacing x(K) in ( C2 ) by ( C1 ), we have

(12)min
x≥0

f (x), where f (x) =
1

2
‖Ax − b‖2

2
+ �eTx.

(13)
∇f (x) = A⊤A

���
P

x − A⊤b
���

�

+𝜆e ≤ 0,

(14)xi(A
⊤Ax − A⊤b + 𝜆e)i = 0 for all i.

($\mathcal {C}1$)
x(K) > 0 ⇒ P(K,K)x(K) − �(K) + 𝜆e = 0

⇒ x(K) = P(K,K)−1(�(K) − 𝜆e) ≥ 0,

($\mathcal {C}2$)
Px − � + 𝜆e ≥ 0 ⇒ P(K̄,K)x(K) − �(K̄) + 𝜆e ≥ 0.
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Let us simplify the notation. Let

We can rewrite ( C1 ) as

Note that the dimension of aK and bK is the cardinality of K . Let

We can rewrite ( C2 ) as

Note that the dimension of cK and dK is the cardinality of K̄ . Moreover, Equations ( C1b ) 
and ( C2b ) are linear in � : Given K , we can easily compute aK , bK , cK , dK.

Appendix 1.2: Algorithm description

The goal of the homotopy algorithm is to compute breakpoints and their corresponding 
supports. It starts with an empty support, corresponding to the zero vector for any � ≥ �max , 
and iteratively adds or removes entries to the support while decreasing the value of �.

The first step to build the regularization path is to find the first breakpoint �max , that is, 
the minimum value of � such that the solution is the zero vector. If the optimal solution is 
x = 0 , that is, K = ∅ and K̄ = {1, 2,… , n} , then from Eq. 13 we have � ≥ max

i
�i . There-

fore, the first breakpoint is

The index i1 = argmax
i

�i is the first to enter the support7, thus for 𝜆2 ≤ 𝜆 < 𝜆max we have 
K = {i1}.

From a given support Kj , the next breakpoint �j+1 ≤ �j is the largest value of � that 
violates one of the conditions ( C1 ) or ( C2 ). If ( C1 ) is violated then a variable will leave the 
support, that is, a positive entry will become zero. Denoting k∗ the index of this entry, we 
have Kj+1 = Kj ⧵ {k

∗} . If ( C2 ) is violated then a variable will enter the support, that is, a 
zero entry will become positive, Kj+1 = Kj ∪ {k∗}.

Let us consider ( C1 ). We have aK(k) − �bK(k) ≥ 0 for all k so

Similarly, for ( C2 ) we have cK(k) − �dK(k) ≥ 0 for all k so

P(K̄,K)[P(K,K)−1(�(K) − 𝜆e)] − �(K̄) + 𝜆e ≥ 0.

(15)aK = P(K,K)−1�(K), and bK = P(K,K)−1e.

($\mathcal {C}1b$)aK − �bK ≥ 0.

cK = P(K̄,K)aK − �(K̄), and dK = P(K̄,K)bK − e.

($\mathcal {C}2b$)cK − �dK ≥ 0.

𝜆max = max
i

�i = max
i
(A⊤b)i = max

i
A(∶, i)Tb.

𝜆j+1 ≥ max
{k|bK(k)<0}

aK(k)

bK(k)
.

7  If two of more columns maximize the value of �i , we have to pick one to start the homotopy. If we always 
pick the one with smallest index, then the algorithm behaves normally, except that at the next iteration we 
will have �j+1 = �j . This is similar to Bland’s rule for the simplex algorithm.
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Therefore,

The algorithm is detailed formally in Algorithm 3. Note that, inside the algorithm loop, 
once a support K is identified, getting the corresponding optimal solution is straightfor-
ward. From Eq. 15, if aK is nonnegative, then the unbiased optimal solution of the NNLS 
problem is the vector x∗ such that x∗(K̄) = 0 and x∗(K) = aK . If aK has negative entries, 
then we can compute the unbiased solution with a standard NNLS solver, with x∗(K̄) = 0 
and x∗(K) = argmin

x≥0
‖P(K,K)x − l(K)‖2

2
.

𝜆j+1 ≥ max
{k|dK(k)<0}

cK(k)

dK(k)
.

𝜆j+1 = max

(
max

{k|bK(k)<0}

aK(k)

bK(k)
�����������������

Case 1

, max
{k|dK(k)<0}

cK(k)

dK(k)
�����������������

Case 2

)
.
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Appendix 1.3: Computational cost

As explained by Kim et al. (2013), the time complexity of one iteration of the homotopy 
algorithm is the same as one iteration of the standard active-set algorithm (Lawson and 
Hanson 1995), that is, O(r3) operations. It is dominated by the computation of aK , that 
entails solving a linear system in at most r variables. The number of iterations equals the 
number of breakpoints, which is in practice similar to those of the active-set. In the worst 
case, active-set methods might require an exponential number of iterations, up to O(2r) , 
as the simplex algorithm for linear programming. However, in practice, we have observed 
that it typically requires much less iterations, of the order of O(r) . In particular, when P−1 
is diagonally dominant, we have bK > 0 , so ( C1 ) is never violated. As a result, when � 
decreases, no positive entry of x becomes zero. We only add entries to the support, so the 
homotopy algorithm will be done in at most r iterations. In practice, even when this condi-
tion is not met, we have observed that adding entries to the support happens far more often 
than removing entries.

As the homotopy algorithm solves a series of �1-penalized NNLS problems, there exist 
conditions under which it is guaranteed to recover the correct supports, that is, the supports 
of the solutions of the corresponding �0-constrained NNLS problems; see Itoh et al. (2017) 
and the references therein.

Appendix 2: Additional experimental results

In this document, we provide the abundance maps resulting from our experiments that 
could not be included in the paper:

•	 CBCL in Fig. 10,
•	 Frey in Fig. 11,
•	 Kuls in Fig. 12,
•	 Jasper in Fig. 13 and 14,
•	 Samson in Fig. 15,
•	 Urban in Fig. 16, and
•	 Cuprite in Fig. 17.
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(a) AS (b) �1-CD

(c) Hcw (d) H+S

Fig. 10   Abundance maps (that is, reshaped rows of X) from the unmixing of the faces dataset CBCL by dif-
ferent algorithms
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(a) OGcw (b) OGg

(c) OG+S

Fig. 10   (continued)
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(a) AS (b) �1-CD

(c) Hcw (d) H+S

Fig. 11   Abundance maps (that is, reshaped rows of X) from the unmixing of the faces dataset Frey by dif-
ferent algorithms
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(a) OGcw (b) OGg

(c) OG+S

Fig. 11   (continued)
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(a) AS

(b) �1-CD

(c) Hcw

(d) H+S

Fig. 12   Abundance maps (that is, reshaped rows of X) from the unmixing of the faces dataset Kuls by dif-
ferent algorithms
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(a) OGcw

(b) OGg

(c) OG+S

(d) ARBOcw

(e) ARBO+S

Fig. 12   (continued)
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(a) AS

(b) �1-CD

(c) Hcw

(d) H+S

Fig. 13   Abundance maps (that is, reshaped rows of X) from the unmixing of the hyperspectral image Jasper 
by different algorithms
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(a) OGcw

(b) OGg

(c) OG+S

(d) ARBOcw

(e) ARBO+S

Fig. 13   (continued)
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(a) �1-CD

(b) H+S

(c) OGg

(d) OG+S

(e) ARBO+S

Fig. 14   Abundance maps (that is, reshaped rows of X) from the unmixing of the hyperspectral image Jasper 
by different algorithms, with k = q∕n = 1.8
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(a) AS

(b) �1-CD

(c) Hcw

(d) H+S

Fig. 15   Abundance maps (that is, reshaped rows of X) from the unmixing of the hyperspectral image Sam-
son by different algorithms
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(a) OGcw

(b) OGg

(c) OG+S

(d) ARBOcw

(e) ARBO+S

Fig. 15   (continued)
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(a) AS

(b) �1-CD

(c) Hcw

(d) H+S

Fig. 16   Abundance maps (that is, reshaped rows of X) from the unmixing of the hyperspectral image Urban 
by different algorithms
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(a) OGcw

(b) OGg

(c) OG+S

(d) ARBOcw

(e) ARBO+S

Fig. 16   (continued)
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(a) AS (b) �1-CD

(c) Hcw (d) H+S

Fig. 17   Abundance maps (that is, reshaped rows of X) from the unmixing of the hyperspectral image 
Cuprite by different algorithms
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(a) OGcw (b) OGg

(c) OG+S

(d) ARBOcw (e) ARBO+S

Fig. 17   (continued)



Machine Learning	

1 3

Acknowledgements  We thank Maxime De Wolf for his help in the implementation of the homotopy algo-
rithm. We thank T.T. Nguyen and her co-authors for making the codes of nonnegative greedy algorithms 
available online under a free software license. Finally, we thank the reviewers of this paper, whose com-
ments helped significantly to improve the paper.

Author contributions  NN designed the algorithm Salmon, implemented it, performed the experiments, and 
wrote the majority of the article. JEC, AV, and NG all contributed significantly to the design of the algo-
rithm and to the writing. JEC provided expertise in greedy algorithms and helped with the implementation 
of the matrix-wise variant of NNOMP. AV provided expertise on the homotopy algorithm and helped with 
its analysis and implementation. NG supervised the work, significantly improved the proof of near-optimal-
ity, and revised the manuscript.

Funding  NN and NG acknowledge the support by the European Research Council (ERC starting Grant No 
679515), and by the Fonds de la Recherche Scientifique - FNRS and the Fonds Wetenschappelijk Onderzoek 
- Vlanderen (FWO) under EOS project O005318F-RG47. NG also acknowledges the Francqui foundation. 
JEC acknowledges the support of the ANR Grant ANR JCJC LoRAiA ANR-20-CE23-0010.

Data availability  The primary sources of the datasets used in our experiments are indicated in the main 
document. We also include them along with our code and test scripts in the following online repository 
https://​gitlab.​com/​nnadi​sic/​giant.​jl.

Declarations 

Conflict of Interest  The authors have no conflict of interest or competing interest to declare.

Ethics approval  Not applicable.

References

Aharon, M., Elad, M., & Bruckstein, A. M. (2005). K-SVD and its non-negative variant for dictionary 
design. In Wavelets XI, Int. Soc. for Optics and Photonics.

Ben Mhenni, R., Bourguignon, S., & Ninin, J. (2021). Global optimization for sparse solution of least 
squares problems. Optimization Methods and Software, 1–30.

Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., & Chanussot, J. (2012). Hyper-
spectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE 
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354–379.

Blumensath, T., & Davies, M. E. (2009). Iterative hard thresholding for compressed sensing. Applied and 
computational harmonic analysis, 27(3), 265–274.

Bruckstein, A. M., Elad, M., & Zibulevsky, M. (2008). On the uniqueness of nonnegative sparse solutions to 
underdetermined systems of equations. IEEE Transactions on Information Theory, 54(11), 4813–4820.

Chen, S., Billings, S. A., & Luo, W. (1989). Orthogonal least squares methods and their application to non-
linear system identification. International Journal of control, 50(5), 1873–1896.

Cichocki, A., Phan, A.H., & Caiafa, C. (2008). Flexible HALS algorithms for sparse non-negative matrix/
tensor factorization. In IEEE workshop on machine learning for signal processing, (pp. 73–78).

Cohen, J.E., & Gillis, N. (2019). Nonnegative low-rank sparse component analysis. In 2019 IEEE interna-
tional conference on acoustics, speech and signal processing, (pp. 8226–8230).

Donoho, D. L., & Tsaig, Y. (2008). Fast solution of �
1
-norm minimization problems when the solution may 

be sparse. IEEE Transactions on Information theory, 54(11), 4789–4812.
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). Least angle regression. The Annals of statis-

tics, 32(2), 407–499.
Eggert, J., & Korner, E. (2004). Sparse coding and NMF. IEEE International Joint Conference on Neural 

Networks, 4, 2529–2533.
Foucart, S., & Koslicki, D. (2014). Sparse recovery by means of nonnegative least squares. IEEE Signal 

Processing Letters, 21(4), 498–502.
Gillis, N. (2012). Sparse and unique nonnegative matrix factorization through data preprocessing. Journal 

of Machine Learning Research, 13, 3349–3386.

https://gitlab.com/nnadisic/giant.jl


	 Machine Learning

1 3

Gillis, N. (2014). Successive nonnegative projection algorithm for robust nonnegative blind source separa-
tion. SIAM Journal on Imaging Sciences, 7(2), 1420–1450.

Gillis, N. (2020). Nonnegative matrix factorization. SIAM.
Hoyer, P. O. (2002). Non-negative sparse coding. In IEEE workshop on neural networks for signal process-

ing, (pp 557–565).
Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal of machine 

learning research, 5, 1457–1469.
Itoh, Y., Duarte, M. F., & Parente, M. (2017). Perfect recovery conditions for non-negative sparse modeling. 

IEEE Transactions on Signal Processing, 65(1), 69–80.
Kim, H., & Park, H. (2007). Sparse non-negative matrix factorizations via alternating non-negativity-con-

strained least squares for microarray data analysis. Bioinformatics, 23(12), 1495–1502.
Kim, J., Ramakrishnan, N., Marwah, M., Shah, A., & Park, H. (2013). Regularization paths for sparse non-

negative least squares problems with applications to life cycle assessment tree discovery. In IEEE 13th 
international conference on data mining, (pp. 360–369).

Lawson, C.L., & Hanson, R.J. (1995). Solving least squares problems. Society for Industrial and Applied 
Mathematics.

Lee, D. D., & Seung, H. S. (1997). Unsupervised learning by convex and conic coding. In Advances in neu-
ral information processing systems, (pp. 515–521).

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. 
Nature, 401(6755), 788–791.

Ma, W. K., Bioucas-Dias, J. M., Chan, T. H., Gillis, N., Gader, P., Plaza, A. J., Ambikapathi, A., & Chi, C. 
Y. (2013). A signal processing perspective on hyperspectral unmixing: Insights from remote sensing. 
IEEE Signal Processing Magazine, 31(1), 67–81.

Mohimani, G. H., Babaie-Zadeh, M., & Jutten, C. (2007). Fast sparse representation based on smoothed 
�
0
 norm. In International conference on independent component analysis and signal separation (pp. 

389–396). Springer.
Morup, M., Madsen, K. H., & Hansen, L. K. (2008). Approximate L0 constrained non-negative matrix and 

tensor factorization. In 2008 IEEE international symposium on circuits and systems (pp. 1328–1331). 
IEEE.

Nadisic, N., Vandaele, A., Gillis, N., & Cohen, J. E. (2020). Exact sparse nonnegative least squares. In 2020 
IEEE international conference on acoustics, speech and signal processing (pp. 5395–5399).

Nadisic, N., Vandaele, A., Gillis, N., & Cohen, J. E. (2021). Exact biobjective k-sparse nonnegative least 
squares. In EUSIPCO 2021-29th European signal processing conference (pp. 2079–2083).

Nguyen, T. T., Idier, J., Soussen, C., & Djermoune, E. H. (2019). Non-negative orthogonal greedy algo-
rithms. IEEE Transactions on Signal Processing, 67(21), 5643–5658.

Osborne, M. R., Presnell, B., & Turlach, B. A. (2000). A new approach to variable selection in least squares 
problems. IMA Journal of Numerical Analysis, 20(3), 389–403.

Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: Recursive function 
approximation with applications to wavelet decomposition. In Proceedings of 27th Asilomar confer-
ence on signals, systems and computers (pp. 40–44).

Peharz, R., & Pernkopf, F. (2012). Sparse nonnegative matrix factorization with �
0
-constraints. Neurocom-

puting, 80, 38–46.
Portugal, L. F., Judice, J. J., & Vicente, L. N. (1994). A comparison of block pivoting and interior-point 

algorithms for linear least squares problems with nonnegative variables. Mathematics of Computation, 
63(208), 625–643.

Soussen, C., Gribonval, R., Idier, J., & Herzet, C. (2013). Joint k-step analysis of orthogonal matching pur-
suit and orthogonal least squares. IEEE Transactions on Information Theory, 59(5), 3158–3174.

Stojnic, M., Parvaresh, F., & Hassibi, B. (2009). On the reconstruction of block-sparse signals with an opti-
mal number of measurements. IEEE Transactions on Signal Processing, 57(8), 3075–3085.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical 
Society: Series B (Methodological), 58(1), 267–288.

Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on 
Information theory, 50(10), 2231–2242.

Tropp, J. A. (2006). Just relax: Convex programming methods for identifying sparse signals in noise. IEEE 
Transactions on Information Theory, 52(3), 1030–1051.

Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation. 
Part I: Greedy pursuit. Signal processing, 86(3), 572–588.

Yaghoobi, M., Wu, D., & Davies, M. E. (2015). Fast non-negative orthogonal matching pursuit. IEEE Sig-
nal Processing Letters, 22(9), 1229–1233.



Machine Learning	

1 3

Zhu, F. (2017). Hyperspectral unmixing: Ground truth labeling, datasets, benchmark performances and sur-
vey. Preprint arXiv:​1708.​05125.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

http://arxiv.org/abs/1708.05125

	Matrix-wise -constrained sparse nonnegative least squares
	Abstract
	1 Introduction
	1.1 Sparsity and NNLS
	1.2 Sparsity in NNLS problems with multiple right-hand sides
	1.3 Contribution and outline of the paper

	2 Related work
	2.1 Arborescent
	2.2 Greedy algorithms
	2.3 Homotopy

	3 Solving matrix-wise q-sparse MNNLS
	3.1 Our key contribution: a two-step algorithm for matrix-wise q-sparse MNNLS
	3.1.1 Computational cost of Salmon

	3.2 Adapting NNOMP for matrix-wise q-sparse MNNLS

	4 Experiments
	4.1 Data
	4.2 Methods
	4.3 Experiment 1: hyperspectral unmixing
	4.4 Experiment 2: evolution of the computing time when q varies
	4.5 Experiment 3: recovery of underlying solution on synthetic datasets

	5 Conclusion
	Acknowledgements 
	References




